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Evaluation of spectral closure theory and direct numerical simulation are used to  
examine the eddy transport of a passive scalar in barotropic /3-plane flow. When a 
large-scale gradient of scalar concentration is imposed, the implied scale separation 
between fixed background gradient and eddies supports the concept of ‘eddy 
diffusion’. The results can be cast in terms of an eddy diffusion tensor K,  whose 
behaviour as a function of mean vorticity gradient p is examined. Earlier theoretical 
work by Holloway & Kristmannsson (1984) is extended to include cases where strong 
vorticity-scalar correlations are observed, and corrected in order to restore random 
Galilean invariance. 

The anisotropy of eddy energy and the direct influence of Rossby wave propagation 
contribute to the overall anisotropy of K. The resulting suppression of meridional 
diffusivity K,,, and enhancement of zonal diffusivity K,,, with increased /3 is 
examined. The variation in simulation K,, is closely reproduced in the closure 
equations. However, the increased K,, is the result of zonal jets whose persistence is 
not accounted for in the statistical theory. 

1. Introduction 
A major obstacle to the study of the large-scale distribution of various substances 

in the atmosphere and oceans is the lack of understanding of turbulent transport. 
Simple specification of eddy diffusivities in analogy with thermodynamic properties 
of the fluid is too crude to be of much value. Actual turbulent diffusion is a complex 
dynamic process influenced by all aspects of the physical setting. For example, on the 
sphere, Rossby wave propagation produces anisotropy in the velocity field, resulting 
in anisotropic diffusion. A quantitatively skilful understanding of turbulent mixing 
in t h e  presence of Rossby waves is a necessary first step towards predictive capability 
with respect to  large-scale transport of passive scalars in geophysical fluids. 
Applications of current interest include the dispersion of pollutants, the oceanic heat, 
salt and CO, fluxes, the horizontal transport of stratospheric ozone, etc. 

The spectral transfer of passive scalar variance in two-dimensional turbulence has 
been studied in the absence of /3 by Lesieur, Sommeria & Holloway (1981) and Lesieur 
& Herring (1985). Although the vorticity and scalar variance are governed by similar 
advective dynamics, their statistical evolutions can be quite different owing to  the 
lack of a scalar counterpart to the relationship between the vorticity and velocity 
fields as seen in the numerical experiments of Babiano et al. (1987). In  their 
simulations both vorticity and scalar variance were injected by fixing the amplitude 
of one of the large-scale modes. At smaller scales the enstrophy spectrum was 
considerably steeper than that of the scalar variance while the vorticity field was 
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dominated by coherent vortices (cf. Fornberg 1977; Basdevant et al. 1981; 
McWilliams 1984) whereas the scalar field was not. Since most of the simulations to 
be discussed in the present study included P, and all were forced with an approximate 
white-noise time dependence, coherent vorticity structures did not form (Holloway 
1984; McWilliams 1984; Herring & McWilliams 1985), and thus do not adversely 
affect the results. 

Holloway & Kristmannsson (1984, hereinafter referred to as HK) considered a 
barotropic P-plane flow advecting a passive scalar whose concentration consisted of 
two components : a fixed constant background gradient and an active eddy field. The 
down-gradient transport is effected by the eddies, which are not permitted to  deplete 
the gradient component of the field. Since the persistence of the gradient acts to 
inject variance into the large scales of the eddy component, and the scalar variance 
transfer is predominantly down-scale, statistical stationarity can be achieved in the 
presence of small-scale diffusion. 

The scalar flux can be used to  define the diffusivity tensor, K. If $(r ,  t )  represents 
the scalar eddy concentration, and G the fixed gradient, then 

(u$) = - K G, (1) 

where u = ui+ vj is the eddy velocity field and ( - ) denotes the ensemble average. 
H K  used a relatively simple closure hypothesis (the Markovian Random Coupling 
Model (Frisch, Lesieur & Brissaud 1974)) as the basis for their statistical theory. 
Agreement with some aspects of numerical simulation led Holloway (1986) and 
Keffer & Holloway (1988) to propose a highly simplified abridgement of the theory, 
expressed as 

for the meridional diffusivity K,,, where I? and C are constants, P = Purrns/&,s and 
($, u, [),,, are the root-mean-square stream function, speed and vorticity re- 
spectively. Equation (2) was compared with direct numerical simulation, giving 
reasonable agreement when C w 0.4 and B w 3. The appeal of (2) is the simplicity of 
its implementation in numerical models as the basis for a parameterization of K,,. 

The purpose of the present paper is to compare the full theory with direct 
numerical simulation and to evaluate its potential for quantitative predictive skill 
with respect to K. For this purpose the Random Coupling Model was replaced with 
the Test Field Model (TFM) (Kraichnan 1971) which, although more complicated, 
has a history of favourable comparison with direct numerical simulation of two- 
dimensional flow (Herring et al. 1974; Herring & McWilliams 1985). The TFM, unlike 
the direct interaction approximation (DIA) (see e.g. Leslie 1973) is invariant to  
random Galilean transformation in that a spatially uniform advection of the velocity 
field, varying randomly from realization to realization, does not influence the 
statistics of the variance transfer. This deficiency of the DIA makes it unsuitable for 
comparison with simulations containing a wide range of scales. 

The ability of the theory to duplicate simulation statistics in the presence of 
depends on a number of unresolved issues. For example, Legras (1980) and 
Carnevale & Martin (1982) have derived turbulent Rossby wave frequency shifts 
which are not accounted for in this study. Also, Shepherd (1987), through the use of 
finite-amplitude stability constraints applied to the inviscid system, has shown that 
P-plane flow cannot be ergodic for sufficiently large P, implying that the statistical 
mechanical hypothesis of equal a priori probability on phase space surfaces of 
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constant energy and enstrophy may not be valid. Ergodicity forms an integral part 
of the closure apparatus where the philosophy is to assume ‘maximum randomness’ 
apart from energy and enstrophy conservation by the transfer terms. The 
consequence of these stability constraints may be stable zonal jets as seen in the 
simulations of Panetta & Held (1988). Although isolated vorticity structures are not 
observed in t,he presence of significant /3, another form of phase coherence was notcd 
in t.heir simulations. Using a simplified baroclinic P-plane model containing a wide 
range of scales, they observed remarkably persistent zonal jets which displayed little 
t.endency to wander in the meridional direction and often remained intact for 
hundreds of large-scale turnover times. If this behaviour is even partially shared by 
the barotropic model, it is not expected to  be reproduced in the closure theory which 
is unable to account for the necessary phase coherence. This would also apply to  the 
scalar advection by the jets. 

The model details are discussed in $2 and the theory-simulation comparisons are 
presented in $3.  Both p and the direction of the spatially uniform scalar gradient are 
varied. Although the meridional diffusivity is treated fairly well by the theory, the 
enhancement of the zonal diffusivity with p is not a fcature of the closure model. This 
is due to large zonal-mode phase persistence times in the simulations which 
significantly exceed estimates based on eddy turnover times. The resulting persistent 
zonal jets act to  advect scalar material more efficiently in the simulations than in the 
statistical theory. The conclusions form $ 4. 

2. Model equations and closure theory 
Following HK we write down the equations describing a passive scalar field 

coevolving with the vorticity in a barotropic P-plane setting. If the total passive 
tracer concentration is given by @(r,  t )  = qb0 + G - r +  $ ( r ,  t ) ,  where G is a fixed 
background gradient, then the vorticity c(r,  t )  and scalar eddy component $(r ,  t )  are 
governed by 

where 6 = Vz$, Di are linear operators acting to dissipate fluctuation variance and f [  
represents external vorticity sources. After imposing periodic boundary conditions in 
both dimensions, an exact Fourier representation can be obtained : 

where uk, K~ are algebraic functions of k = Ikl representing explicit vorticity and 
scalar dissipation due to operators Di, A, = 3 - ( k  x p ) / p 2 ,  Gk = 2 .  (G x k ) / k 2  and fk  

is the transform of the external torque field 6. The linear Rossby frequency is 

For many purposes (5) and (6) provide more information than is desired or needed. 
When the location and intensities of individual eddies are not in question but rather 

wk = - P k z / k 2 .  
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some measure of their long-tcrm effect, as in the case of subgrid-scale para- 
meterization, a statistical approach is adopted and equations for the second 
moments are formulated. If these are expressed as Zk = Qk = ( $ k $ - k )  and 
rk = <ck $ - k ) >  then 

+ A k p ( $ - k c p c q ) ) .  I 
Deriving the equations for successively higher-order moments would lead to an 
unclosed set (see e.g. Leslie 1973; Orszag 1977; Lesieur 1987). If the moments are 
written as products of lower-order moments plus a residual or cumulant, closure can 
be effected by assuming that fourth cumulants act to relax triple moments. 
Consideration is restricted to quasi-stationary statistics, i.e. that triple moments 
evolve on timescales short compared with those of second moments. If the fourth- 
cumulant terms in the triple-moment equations are replaced by damping terms 
characterized by rates ,u2iq, then the stationary triple moments are written 

( 6 - k  6 p  c q )  = @Lpq{ ( A  k p  + A k q )  ' p  ' q  + (Apk  + Ap-q) z k  ' q  + (Aqk + A q-p) z k  ' p >  > 

<$-k cp $ q )  = @?pq{Akp z p  Qq + Aq-pZp Qk + (Apk  +A,-,) r k  r-, -k rk rp + A k q  r p  r-q}, 

( $ - k c p c q )  = B ~ l m { A k p Z p r q + A k q r p Z q + ( A p k f A p - q )  rkzq+(Aqk+Aq-p)Zprk} ,  

where, if we ignore frequency shifts of the kind proposed by Legras (1980) and 
Carnevale & Martin (1982), 

(8) pgq = p k  (0 +pj)+pf)> 

v( l )  kpq - - v k  + v p  + V q ,  v g q  = Kk + vp + Kq,  V ( 3 )  kpq = K k + v p + V q >  

w!!Lpq = w - k  + u p  + wq, w?ipq = op, w!?lpq = wp f wq, 

and linear gradient terms have been neglected. 
The timescale for triple-moment relaxation p?lm is obtained in the TFM from the 

rate a t  which advection induces exchange between the solenoidal and compressive 
parts of a compressible test field advected by the turbulent velocity field (Kraichnan 
1971). The particular case of two-dimensional turbulence with Rossby waves has 
been examined by Holloway & Hendershott (1977) and Legras (1980). Following the 
former we take 

where g(l), which represents the efficiency of prcssure scrambling in decorrelating 
triple moments. is an adjustable parameter. 

and hence the O?,$ in such a way as to ensure that 
the closure respects the realizability conditions that zk> 0, &k 2 0 and r k c k  d zk 

It remains to specify the 
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Qk. A number of choices have been examined in previous work, most of which was 
restricted to the case (@) = 0 and p = 0. For example, following Kraichnan ( 1 9 7 ~  
two studies (Newman & Herring 1979; Herring et al. 1982) have specified two 
separate ways to  calculate scalar transfer timescales based on the identification of the 
compressive part of the test field with the gradient field of the scalar. Other studies 
using eddy-damped quasi-normal Markovian closures (EDQNM) have also intro- 
duced multiplicative constants used in calculating the O?iM (Larchev6que & 
Lesieur 1981 ; Lesieur & Herring 1985). It is clear that, within the limits imposed by 
the realizability constraints, there are a number of possibilities which require 
specification of further adjustable parameters. Given that this is the weak point of 
closure, we choose instead the simplest form B?ipq = O?ipq with g ( i )  = 1, for all triple 
moments. We have also performed numerical evaluations employing a number of 
representations involving different O?ipq as suggested by a reviewer. We find that the 
results are not very sensitive to  these choices, a t  least within the parameter range 
that we have explored. I n  addition, equal O!ipq can be argued from consideration of 
an extreme case. If, for example, vk = K k ,  f k  = 0 and the gradient is set to  G = ( 0 , p )  
with the initial fields satisfying 5 = 4, then (5) and (6) imply that the vorticity and 
scalar fields remain equal. Setting zk = Qk = rk in ( 7 )  yields identical correlation, 
vorticity and scalar statistics only if the O$q are all equal. Since the TFM provides 
a means of determining O$q, this has been adopted and superscripts will henceforth 
be dropped. The closed set then becomes, 

where 

and the forcing term ( f k  &k)  in the correlation ( r k )  equation has been omitted 
corresponding to  the case of white-noise forcing considered here. 

Equations (8), ( 9 )  (dropping superscripts), (lo), (11)  and (12)  now form a closed set 
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for the second moments. In order for the closure equations to mimic the nonlinear 
transfer of (3) and (4) as well as their inviscid equilibria (setting aside concerns 
regarding ergodicity in the presence of large /3 (Shepherd 1987)), it is necessary that 
the quadratic invariants of the nonlinear terms (energy, enstrophy, total eddy scalar 
content and scalar-vorticity correlation) survive the closure. This is ensured by the 
symmetry of 6-kM with respect to wavenumber. Equations (lo), (11)  and (12) also 
respect the realizability constraints mentioned above. Although the equations of 
HK, obtained by setting bk, nk and the second term in the summand for Gk to zero, 
do not satisfy Galilean invariance, the inclusion of the neglected terms restores it. 

3. Numerical experiments 
Although K is independent of G and can be obtained from experiments with a 

scalar gradient G = (GI, G,), where G, =+ 0, the scalar variances will be affected if the 
theory is inaccurate in its prediction of either K,, or Kvv. For this reason, the 
numerical experiments are organized into two groups. The first of these uses G = (0, 
1) in order to focus on the meridional diffusion in a case where the ensemble-average 
zonal diffusion is zero, thus nullifying any effects due to possible persistent zonal jets. 
In the second group the gradient is set to G = (2-f, 2-i) yielding equal zonal and 
meridional fluxes in the absence of /3. This choice was motivated by the results of the 
first group of experiments, which show the theoretical K,, to be accurate, and the 
fact that GI = G, provides a more thorough test of the closure theory since the 
vorticity-scalar correlation vanishes when G, = 0. 

Although each simulation was forced from a state of rest, a statistically stationary 
state was eventually achieved. During this period the large-scale eddy turnover time, 
defined as 7 = 27r/cI,,,, fell in the range 2.8&0.1 for all experiments described in this 
study. We therefore adopt this value as our unit of time in the sequence. The initial 
spin-up period, approximately 207, was followed by the accumulation of statistics for 
another 907. The white-noise vorticity forcing was applied isotropically over the 
range 2 < k < 4 and the vorticity and scalar dissipation functions were respectively 
vk = vo + v4 k4 and K k  = K~ k4 with vo = 0.05 (yielding a spin-down time of 77) and 
v4 = K~ = 5 x lo-'. Simulations using high-order and Laplacian viscosities have been 
compared by several authors (e.g. Basdevant & Sadourny 1983) with the conclusion 
that the use of the former does not significantly influence the statistics of the larger 
scales. Owing to the computationally demanding task of evaluating anisotropic 
closure equations, this study has been limited to modest resolution. High-order 
dissipation operators allow us to extend the effective Reynolds number, defined as a 
function of the ratio of the inner to outer scales. The Fourier representations were 
isotropically truncated at k = k, = 30 while dealiased convolutions were evaluated 
in real space using 64 x 64 collocation points. Other aspects of the numerical method 
are discussed in the Appendix. 

3.1. The case G = ( 0 , l )  
A set of simulation-theory comparison experiments were run with the above 
parameters and /3-values ofi0, 1, 2, 3, 4 and 5, resulting in geophysically relevant 
values in the range O < j 3 <  0.9. Figure 1 shows the convergence of average 
enstrophy, scalar variance and the components of the scalar flux 
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FIOCRE 1 .  Time series of the cumulative average variance in the spectrum at wave-bands k = 1 
(-). k = 10 (----), k = 20 (-----) and k = 30 (.....) for (a) the enstrophy, (b) the scalar 
variance. (c) the zonal flux and (d) the meridional flux (G = (0, I ) ) .  

in the wavebands centred on k = 1, 10, 20 and 30 for the case p = 5 (p = 0.9) as a 
typical example. The convergence of average quantities is quite good, with the 
exception of the zonal scalar flux (uq5). In  the next section we shall present evidence 
that this is due to the existence of persistent zonal jets. 

In agreement with previous studies including /3 or random agitation or both 
(Holloway 1984; McWilliams 1984; Herring & McWilliams 1985), the vorticity field 
was not visibly intermittent. This can be quantified by the vorticity kurtosis, 
X(5) = (C4)/(C)', which was measured a t  the end of each run ( t  > 1007) and took 
the near-Gaussian values of 3.4 and 2.6 for the cases p = 0 and 5 ,  respectively. 
Although these experiments did not show large vorticity kurtoses, it has been argued 
by Herring & McWilliams (1985) that the lack of intermittency in the stream 
function may imply that large-scale quantities such as eddy transports are described 
well by the closure theory even in the presence of isolatcd vortices. Another aspect 
of the appearance of the fields was the increasing anisotropy with ,8. A measure of this 
is d = (U~ ,~ -~~ , , ) / (U , " , ,+~ ,~~ , ) ,  2 which was found to be 0.007 for /3 = 0 and 0.181 for 
p = 5. 
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FIQURE 2. The vorticity (-, 0 )  and scalar (-----, 0) variance spectra as well as the meridional 
flux spectrum for (u,  b )  /3 = 0 and (c, d )  p = 5 (G = (0, l ) ) ,  where the simulation and closure theory 
data are represented by circles and lines, respectively. 

Figure 2 shows a comparison between the closure theory and the simulation of the 
vorticity and scalar variance spectra as well as the spectrum of the meridional scalar 
flux (v4) for p = 0 and 5 (p  = 0 and 0.9). The quality of the agreement demonstrates 
that the statistical theory is able to describe the very large variation in the scalar 
variance and down-gradient flux with p. The theory of HK, which effectively 
amounts to neglecting products involving the correlation r k  in the transfer terms, 
would not have been as successful when p =I= 0. For example, in the case of the p = 
5 simulation II'(k)l 2 &(k)  for all k and X k Z k  = 5.0, ckrk = 0.90 and XkQk = 0.39. 
Some systematic discrepancies are noted in the present theory however, such as the 
overestimation of the enstrophy spectrum by the TFM in the small scales. This has 
been ascribcd to the influence of dissipation-range intermittency by Herring & 
MeWilliams (1985) but may be complicated here by the unaccounted-for effect of the 
Robert filter (see the Appendix). We have also observed that the closure increasingly 
overestimates the energy in the largest scales as /3 is increased, and attribute it to the 
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FIGURE 3. K,, us. p for simulation, closure theory and the expression (2) with A = 0.4 and 

B = 3 (labelled H)  and A = 0.8 and B = 6 (labelled BH) (G = (0, 1)). 

stabilizing effect of /3 on zonal currents. Other closure-simulation discrepancies are 
observed in the scalar statistics : the magnitude of the large-scale down-gradient flux 
is overestimated and the scalar variance is underestimated at intermediate scales and 
overestimated a t  small scales. Not surprisingly, a more careful treatment of the Oclkpq 
using (8) with ,@ = pi1) as given by (9) also produced spectra which were quite close 
to the simulation values, while showing similar systematic difference?. 

Figure 3 displays the meridional diffusivity, K,, as a function of p for all of the 
experiments as well as for the closure theory. Once again, the statistical theory was 
able to account fairly accurately for an order of magnitude variation due to the 
influence of /3. The results obtained from two versions of the simplified expression (2) 
are also displayed. The curve labelled ‘H’ ,  which was obtained using the Holloway 
(1986) values C = 0.4 and B = 3, seriously underestimates K,, at ,8 = 0 and falls off 
too slowly with p at larger values. Although many of the considerations underlying 
(2) are complicated by the addition of the new terms included in the present study, 
i t  was found that this expression, with A = 0.8 and B = 6 provided a good fit to  the 
simulation data (sec the curve labelled ‘BH’). 

3.2. The case G = (2-:,2-:) 

An experiment with equal zonal and meridional gradient components was run in the 
same manner as above in order to investigate the zonal diffusivity. The spectral 
comparison (as in figure 2) of the p = 5 case is shown in figure 4, where it can be seen 
that the closure underestimated the magnitude of the zonal flux and the scalar 
variance by a wide margin. The closure evaluation using different O?LPq as prescribed 
by (8) showed the same discrepancy but to a lesser extent. Still, the large-scale scalar 
variance and zonal flux were systematically underestimated by factors of about 10 
and 2, respectively (p = 5 ) .  A detailed comparison of the modal second moments in 
both simulation and theory traced the discrepancy to the cross-correlation rko for the 
zonal wavevector k, = (0, l ) ,  which was four times larger in the simulation than in 
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FIQURE 4. The vorticity, scalar variance and zonal flux spectra for j3 = 5, 
as in figure 2 but for G = (2-;, 2-i). 

the closure. It was also noted that the theoretical r, was a smooth function ofk while 
the simulation showed a very abrupt peak a t  k,. In  order to  test whether the 
discrepancy was entirely due to  this difference, the closure scalar variance equation 
(1 1) was evaluated using the closure and r,, with the exception of the mode k, for 
which the simulation rko was substituted. The result was scalar variance agreement 
of the quality of 83.1, implying that, apart from r k o ,  the statistical theory was able 
to predict accurate second moments. 

An examination of (12) reveals that rko can be generated by the vorticity variance 
through the gradient term, or by nonlinear transfer into k,. Since reasonable 
agreement between closure and simulation Zko was observed, the failure of the 
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FIGCRE 5 .  Time series of the zonal average velocit,y for (a) f i  = 0 and (b )  ,8 = 5 .  

statistical theory occurred in the transfcr. It was apparcntly unable to reproduce the 
dynamics responsible for the abrupt peak in sirnulahion r, at k,. This mode is the 
most energetic of the zonal modes, which are distinguishcd by having zero Rossby 
frequency, implying constant phase in the linear case. In  the nonlinear case, the 
closure assumes that both amplitude and phase vary on a timescale pio' characteristic 
of triple correlations. If, on the other hand, the phase becomes locked (i.e. fixed over 
a timescale long compared to piol!, then the gradient source term in (6) conceivably 
produces a phase-locked response in q5ku which in turn produces large correlations and 
hence zonal fluxes. 

To test this conjecture we have calculated time series of the zonal average of u for 
f l =  0 and 5 which are displayed in figure 5. In terms of the large-scale eddy turnover 
time T ,  the TFM decorrelation timescales %/,uk0 were 77 (p = 0) and 157 (p = 5). It 
is clear that  the phase persistence of the zonal modes increases with p and is much 
longer than 2n/pku when /I = 5.  This can be observed directly in the time series of the 
phase of k, for p = 0 and 5 shown in figure 6. The same behaviour has also been noted 
at much lower resolution (down to k, = 7)  for a variety of experiments with the 
meridional lengthscale being determined by t,he wavcnumber of the energy- 
containing zonal modes. The existence of the jets was also seen to be rather 
sensitively dependent on the Ekman dissipation coefficient v,. At large vo the jets 
werc apparently dissipated on a shorter timescale than that required for their 
formation. 

Onc perplexing aspect of this phenomenon is the quality of agreement between 
simulation and closure vorticity variances. Given the existence of important 
discrepancies in phase timescales, one might expect, the closure enstrophy transfer to 
be less accurately represented. Although this apparently is not the case, the 
discrepancy makes its presence felt in the scalar equation where the effective forcing 
in the simulation is phase-locked, while the statistical effect of the assumed short- 
lived fluctuations in the closure is much weaker. 
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FIGURE 6. Time series of the phase of the mode k,  = (0 , l )  for ( a )  /3 = 0 and ( b )  /3 = 5 .  

4. Conclusions 
The closure theory was able to  reproduce approximatcly the vorticity variances 

of the simulation for the values of /? considered here (0 < /? < 0.9). With a meridional 
background scalar gradient the /?-effect was found to induce vorticity-scalar 
correlations which were not well treated in the earlier theory of HK. After extending 
the theory to account for the case of strong /? and to restore random Galilean 
invariance, the theoretical scalar, vorticity-scalar correlation and meridional 
diffusivity (Kyy) statistics were also in agreement with those of the simulation. The 
highly-simplified expression (2), motivated by the theory presented in HK, remains 
a good approximation when C=O.8  and B =  6, and appears worthy of further 
investigation as a parameterization of Kyu. 
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In  the presence of a significant zonal component to the scalar gradient, the 
agreement between simulation and theoretical scalar, correlation and zonal 
diffusivity (Kxx)  statistics was rather poor. This failure of the statistical theory is due 
to  the anomalous persistence of the zonal-mode phases in barotropic P-plane 
turbulence, i.e. zonal jets that wander only very slowly in the meridional direction. 
These persistence times must be accurately predicted by any theory that attempts 
to  model zonal fluxes. 

This research has been supported in part under the Office of Naval Research grant 
N00014-87-G-0262. 

Appendix. Numerical details 
A.l .  The evaluation of the closure equations 

Considering that the closure hypothesis assumes quasi-stationarity, and that it is 
more convenient in the simulations to  perform time averaging over the stationary 
regime of one experiment than ensemble averaging, i t  was considered advantageous 
to restrict this study to statistically stationary states. The numerical approach 
adopted was to seek the stationary solution of the closure equations using the fewest 
possible number of iterations without necessarily describing transient behaviour 
accurately. Using the expression (9), pk is obtained from the vorticity variances 2, 
by iteration. In  order to describe accurately the time evolution of (lo),  (1  1) and (12), 
the pk must be iterated to stationarity a t  each timestep. We chose rather to  use only 
one iteration per timestep, implying that our scheme does not approximate the early 
time behaviour. The steady state, however, remains unaffected. 

The iterative scheme resembles forward-difference timestepping with the linear 
and nonlinear dissipation terms treated pseudo-analytically. For example, if 

a 
at 
-2(t) = F ( t ) - a ( t ) Z ( t )  

is the equation to  be solved, the scheme treats F(t )  and a(t)  as constants over one 
timestep then solves the equation analytically, i.e. 

The iterative procedure starts off with a rather poor guess for pk and a relatively 
small ' timestep '. After a few tens of iterations, the ' timestep ' can be increased to 
infinity, implying an iteration of Zn+' = F(B")/a(Z"). It  was found to be particularly 
economical to  carry out the procedure a t  low resolution (and large small-scale 
dissipation) and then to increase resolution (decrease dissipation) in steps until the 
desired result was achieved. 

Although it  is not, strictly speaking, part of the numerical detail, we would like to 
compare the implicit TFM formulation of pk with two other EDQNM explicit 
formulations. The first of these is an anisotropic generalization of the form used by 
Pouquet et al. (1975) in which pk is obtained from the shear due to scales larger than 
k-1 

pk = c 2p)'. (A 2) 
lpl< Ikl 
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10-1 
1 oo 10' 

k 

FI(:L.HE 7. ,ur+vk evaluated using the Trst Field Jlotlel (-). equation ( A  3) from 
Holloway (1987) (-----) and equation (A2) from Pouyuet rf a / .  (1975) (.....) . 

The other was proposd  by Holloway (1987) as an approximation to the TFM which 
approaches (A 2) as  k +  m, but which falls off more quickly with decreasing k in the 
range 0 < k < k,, where k;' is the cnergy-containing scale. Setting the topographic 
terms. which tha t  paper was mainly concerned with, to  zero. and noting that  his ,uk 
is our pk + u k ,  we obtain 

where it is clear tha t  the positive solution is chosen. At large k both forms give 
approximately the same valuc provided A, = A, = A .  If these dosures are to  give the 
same Batchelor-TAth-Kraichnan constant in the enstrophy-cascading inertial range 
as the TFM, then h = 0.3768 (Pouquet et al. 1975). The results of a comparison 
between (A 2 )  and (A 3) ,  made with the vorticity variancw from thc TFM closurc (g 
= 1,  A = 0.376. ,5' = 0 ) ,  show considerable agreement. suggesting that  the closure is 
not extremely sensitive to  the exact form of pk (ser figure 7) .  From the numerical 
point of view it requires less computational cffort t o  use an explicit formulation for 
non-stationary problems : however, it should bc pointed out  that ,  unlike the TFM, 
neither (A 2) nor (A 3) directly account for thc influr.ncc of /3. 

A.2. The direct numerical simulations 
The numerical simulations were pcrformed using dealiased pseudo-spectral methods 
(Orszag 1971) as implemented in the model described in Ramsden, Whitfield & 
Holloway (1985). A leapfrog timc scheme (At = 0.005) was employed on the 
nonlinear, forcing and gradient terms and the dissipation was applied through the 
use of exponential factors much as i n  (A 1 ) .  The isotropic forcing was of the form 
Fk = f (k)  g k ( t ) .  whercf(k) was a constant in the waveband 2 < k < 4 and zero elsewhere 
and (gk ( t )gk ( s ) )  = s ( t - s ) .  The effect of white-noise forcing on the leapfrog time 
scheme is to  induce rapid decoupling. This was controlled with a numerical filter 
(Robert 1966) whosc paramcter was set to  0.1. 
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The spectra were calculated in the same manner in both the closure and 
simulations. If S(k)  is the power spectrum formed from the corresponding modal 
quantities S,, then 

where N ( k )  is the number of modes in the kth waveband, implying a smoothing out 
of the modal distribution over k-space. Since the closure solutions were very smooth 
functions of k, this representation was considered preferable. Circular truncation was 
imposed a t  k = 30.5 in order to complete the outer waveband. 
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